
18 Bits and pieces
Although one generally prefers to think of data elements as "long integers" or "doubles"
or "characters", in the machine they are all just bit patterns packed into successive bytes
of memory.  Once in a while, that is exactly how you want to think about data.

Usually, you only get to play with bit patterns when you are writing "low-level"
code that directly controls input/output devices or performs other operating system
services.  But there are a few situations where bits get used as parts of high level
structures.  Two are illustrated in sections 2 and 3 of this chapter.  The first section
summarizes the facilities that C++ provides for bit manipulations.

Section 18.4 covers another of the more obscure "read only" features of C++.  This
is the ability to cut up a (long integer) data word into a number of pieces each
comprising several bits.

18

18.1 BIT MANIPULATIONS

If you need to work with bits, you need a data type to store them in.  Generally,
unsigned longs are the most convenient of the built  in data types.  An unsigned long
will typically hold 32 bits.  (There should be a header file specifying the number of bits
in an unsigned long, but this isn't quite standardized among all environments.)  If you
need bit records with more than 32 bits you will have to use an array of unsigned longs
and arrange that your code picks the correct array element to test for a required bit.  If
you need less than 32 bits, you might chose to use unsigned shorts or unsigned chars.

Unsigned types should be used.  Otherwise certain operations may result in '1' bits
being added to the left end of your data.

You can't actually define bit patterns as literal strings of 0s and 1s, nor can you have
them input or output in this form.  You wouldn't want to; after, all they are going to be
things like

01001110010110010111011001111001
00101001101110010101110100000111

Use unsigned longs
to store bit patterns

Input and output and
constants



506 Bits and pieces

Instead, hexadecimal notation is used (C and C++ offer octal as an alternative, no one
still uses octal so there is no point your learning that scheme).  The hexadecimal (hex)
scheme uses the hex digits '0', '1', … '9', 'a', 'b', 'c', 'd', 'e', and 'f' to represent groups of
four bits:

hex bits hex bits
 0 0000  1 0001
 2 0010  3 0011
 4 0100  5 0101
 6 0110  7 0111
 8 1000  9 1001
 a 1010  b 1011
 c 1100  d 1101
 e 1110  f 1111

(The characters 'A' … 'F' can be used instead of 'a' … 'f'.)  Two hex digits encode the
bits in an unsigned byte, eight hex digits make up an unsigned long.  If you define a
constant for say an unsigned long and only give five hex digits, these are interpreted as
being the five right most digits with three hex 0s added at the left.

Hexadecimal constants are defined with a leading 0x (or 0X) so that the compiler
gets warned that the following digits are to be interpreted as hex rather than decimal:

typedef unsigned long Bits;

const Bits kBITS1 = 0x8e58401f;

The iostream functions handle hex happily:

#include <iostream.h>

typedef unsigned long Bits;

void main()
{

Bits b1 = 0x1ef2;
cout.setf(ios::showbase);
cout << hex << b1 << endl;

Bits b2;
cin >> b2;
cout << b2 << endl;

}

When entering a hex number you must start with 0x; so an input for that program could
be 0xa2.  You should set the "ios::showbase" flag on the output stream otherwise the

Hexadecimal symbols
for bit patterns



Bit manipulations 507

numbers don't get printed with the leading 0x; it is confusing to see output like 20 when
it really is 0x20 (i.e. the value thirty two).

You have all the standard logical operations that combine true/false values.  They
are illustrated here for groups of four bits (both binary and equivalent hex forms are
shown):

0110 - (complement, or "not") -> 1001
0x6 0x9

This would be coded using the ~ ("bitwise Not operator"):

result = ~value;

0110 and 1010  -> 0010
0x6 0xa 0x2

This would be coded using & ("bitwise And operator"):

result = val1 & val2;

(Ouch.  We have just met & as the "get the address of" operator.  Now it has decided to
be the "bitwise And operator".  It actually has both jobs.  You simply have to be careful
when reading code to see what its meaning is.  Both these meanings are quite different
from the logical and operator, &&, that was introduced in Part II.)

0110 or 1010  -> 1110
0x6 0xa 0xe

This would be coded using | ("bitwise Or operator"):

result = val1 | val2;

We have had many examples with the | operator being used to make up bit patterns
used as arguments, e.g. the calls to open() that had specifiers like ios::in |
ios::out.  The enumerators ios::in and ios::out are both values that have one bit
encoded; if you want both bits, for an input-output file, you or them to get a result with
both bits set.

0110 xor 1010  -> 1100
0x6 0xa 0xc

This would be coded using ^ ("bitwise Xor operator"):

result = val1 ^ val2;

What can you do with
bit patterns?

complement

and

or

exclusive or



508 Bits and pieces

(The "exclusive or" of two bit patterns has a one bit where either one or the other but
not both of its two inputs had a 1 bit.)

You should test out these basic bit manipulations with the following program:

#include <iostream.h>

typedef unsigned long Bits;

int main()
{

Bits val1, val2, val, result;
cout.setf(ios::showbase);
cout.setf(ios::hex,ios::basefield);

cout << "Enter bit pattern to be complemented : ";
cin >> val;
result = ~val;
cout << "Val : " << val << ", Not val : " << result <<

endl;

cout << "Enter two bit patterns to be Anded : " << endl;
cout << "Val1 :"; cin >> val1;
cout << "Val2 :"; cin >> val2;
result = val1 & val2;
cout << "Val1 : " << val1 << ", Val2 : " << val2

<< ", And gives " << result << endl;

cout << "Enter two bit patterns to be Ored : " << endl;
cout << "Val1 :"; cin >> val1;
cout << "Val2 :"; cin >> val2;
result = val1 | val2;
cout << "Val1 : " << val1 << ", Val2 : " << val2

<< ", Or gives " << result << endl;

cout << "Enter two bit patterns to be Xored : " << endl;
cout << "Val1 :"; cin >> val1;
cout << "Val2 :"; cin >> val2;
result = val1 ^ val2;
cout << "Val1 : " << val1 << ", Val2 : " << val2

<< ", Xor gives " << result << endl;

return 0;
}

Try to work out in advance the hex pattern that you expect as a result for the inputs that
you choose.  Remember that an input value gets filled out on the left with 0 hex digits
so an input of 0x6 will become 0x00000006 and hence when complemented will give
0xfffffff9.

Of course there are abbreviated forms.  If you are updating a bit pattern by
combining it with a few more bits, you can use the following:

Abbreviated forms



Bit manipulations 509

result &= morebits; // i.e result = result & morebits;
result |= morebits;
result ^= morebits;

In addition to the bitwise Ands, Ors etc, there are also operators for moving the bits
around, or at least for moving all the bits to the left or to the right.

These bit movements are done with the shift operators.  They move the bits in a data
element left or right by the specified number of places.  A left shift operator moves the
bits leftwards, adding 0s at the right hand side.  A right shift operator moves bits
rightwards.  This is the one you need to be careful with regarding the use of unsigned
values.  The right shift operator adds 0s at the left if a data type is unsigned; but if it is
given a signed value (e.g. just an ordinary long) it duplicates the leftmost bit when
shifting the other bits to the right.  This "sign extension" is not usually the behaviour
that you want when working with bit patterns.  Bits "falling out" at the left or right end
of a bit pattern are lost.

The shift operators are:

<< left shift
>> right shift

Again ouch.  You know these as the "takes from" and "gives to" operators that work
with iostreams.

In C++, many things get given more than one job (or, to put it another way, they get
"overloaded").  We've just seen that & has sometimes got to go and find an address and
sometimes it has to combine bit patterns.  The job at hand is determined by the context.
It is just the same for the >> and << operators.  If a >> operator is located between an
input stream variable and some other variable it means "gives to", but if a >> operator
is between two integer values it means arrange for a right shift operation.

The following code fragment illustrates the working of the shift operators:

#include <iostream.h>

typedef unsigned long Bits;

int main()
{

Bits val, result;
int i;
cout.setf(ios::showbase);
cout.setf(ios::hex,ios::basefield);
cout << "Enter val "; cin >> val;
cout << "Enter shift amount "; cin >>i;

result = val << i;
cout << "Left shifting gives " << result << endl;

Moving the bits
around

Shift operators

Overloaded operators



510 Bits and pieces

result = val >> i;
cout << "Right shifting gives " << result << endl;

return 0;
}

An example output is:

Enter val 0x01234567
Enter shift amount 8
Left shifting gives 0x23456700
Right shifting gives 0x12345

Moving by 8 places as requested in the example means that two hex digits (4-bits each)
are lost (replaced by zeros).

While you probably find no difficulty in understanding the actual shift operations,
you may be doubting whether they have any useful applications.  They do; some uses
are illustrated in the examples presented in the next two sections.

18.2 MAKING A HASH OF IT

It is common to need to generate a "key value" that summarizes or characterises a
complex data object.  If data objects are in some sense "equal", then their generated key
values must be equal.  A key generation process need not be perfect; it is acceptable for
two unequal data objects to have the same key value, but ideally the chance of this
happening should be very low.  A key value can be a (32-bit) unsigned long integer,
though preferably it is something larger (e.g. a 64 bit "long long" if your compiler
supports such things).  The examples here will use unsigned longs to represent such
keys.

Where might such keys be needed?  There are at least two common applications:

1 As a filter to improve performance when searching a collection for matching data

2 As a summary signature of some data that can be used to check that these data are
unchanged since the summary was generated.

The idea of the search filter is that you use the key to eliminate most of the data in a
collection, selecting just those data elements that have equal keys.  These data elements
can then be checked individually, using more elaborate comparisons to find an exact
match.

The process of generating a key is known as "hashing", and it is something of an art
form (i.e. there aren't any universal scientific principles that can lead you to a good
hashing function for a specific type of data).  Here we consider only the case of text
strings because these are the most common data to which hashing is applied

Hashing



Making a hash of it 511

18.2.1 Example hashing function for a character string

If you have a string that you want to summarize in a key, then that key should depend
on every character in the string.  You can achieve this by any algorithm that mixes up
(or "smashes together" of "hashes") the bits from the individual characters of the string.

The "XOR" function is a good way to combine bits because it depends equally on
each of its two inputs.  If we want a bit pattern that combines bits from all the characters
in a string we need a loop that xors the next character into a key, then moves this key
left a little to fill up a long integer.

Of course, when you move the key left, some bits fall out the left end.  These are the
bits that encode the first few characters.  If you had a long string, the result could end
up depending only on the last few characters in the string.

That problem can be avoided by saving the bits that "fall out the left end" and
feeding them back in on the right, xoring them with the new character data.

The following function implements this string hashing:

Bits HashString(const char str[])
{

Bits Result = 0;
int n = strlen(str);
Bits Top5Bits = 0xf8000000;
Bits Carry = 0x0;
const int kleftmove = 5;
const int krightmove = 27;
for(int i = 0; i< n; i++) {

Carry = Result & Top5Bits;
Carry = Carry >> krightmove;
Result = Result << kleftmove;
Result ^= Carry;
Result ^= str[i];
}

return Result;
}

The statements:

Carry = Result & Top5Bits;
Carry = Carry >> krightmove;

get the bits occupying the left most five bits of the current key and move them back to
the right.  The variable Top5Bits would commonly be referred to as a "mask".  It has
bits set to match just those bits that are required from some other bit pattern; to get the
bits you want (from Result) you "perform an and operation with the mask".

The bits in the key are moved left five places by the statement:



512 Bits and pieces

Result = Result << kleftmove;

Then the saved leftmost bits are fed back in, followed by the next character from the
string:

Result ^= Carry;
Result ^= str[i];

The following outputs show the encodings obtained for some example strings:

mellow : 0xdc67bd97
yellow : 0xf467bd97
meadow : 0xdc611d97
callow : 0xc027bd97
shallow : 0x1627bd8b
shade : 0x70588e5
2,4,6-trinitrotoluene : 0xabe69e14
2,4,5-trinitrotoluene : 0xabe59e14
Bailey, Beazley, and Bradley : 0x64c55ad0
Bailey, Beazley, and Bradney : 0x64c552d0

This small sample of test strings doesn't have any cases where two different strings get
the same key, but if tried a (much) larger sample of strings you would find some cases
where this occurred.

Checking a hash key is quicker than comparing strings character by character.  A
single comparison of the key values 0x64c55ad0 and 0x64c442d0 reveals that two
strings (the two B, B, & Bs) are dissimilar.  If you were to use strcmp(), the loop
would have to compare more than twenty pairs of characters before the dissimilarity
was noted.

If you have a table of complex strings that has to be searched many times, then you
could gain by generating the hash codes for each string and using these values during
the search process.  The modified table would have structs that contained the hash key
and the string.  The table might be sorted on hash key value and searched by binary
search, or might simply be searched linearly.  A hash key would also be generated for
any string that was to be found in the table.  The search would check test the hash keys
for equality and only perform the more expensive string match in the (few) cases where
the hash keys matched.

You can make the lookup mechanism even faster.  A hash key is an integer, so it
could represent the index of where an item (string) should be stored in an array.  The
array would be initialized by generating hash keys for each of the standard strings and
then copying those strings into the appropriate places in the table.  (If two strings have
the same hash key, the second one to be encoded gets put into the next empty slot in the
array.)  When a string has to be found in the table, you generate the hash key and look
at that point in the array.  If the string there didn't match, you would look at the strings



Hashing a string 513

in the next few locations just in case two strings had ended up with the same key so
causing one to be placed at a location after the place where it really should go.

Of course there is a slight catch.  A hash key is an integer, but it is in the range 0…
4000million.  You can't really have an array with four thousand million strings.

18.2.2 A simple "hash table"

The idea of using the hash key as a lookup index is nice, even though impractical in its
most basic form.  A slightly modified version works reasonably well.

The computed hash key is reduced so that instead of ranging from zero to four
thousand million, its range is something more reasonable – zero to a few hundred or
few thousand.  Tables (arrays) with a few thousand entries are quite feasible.  The hash
key can be reduced to a chosen range 0…N-1 by taking its value modulo N:

key = HashString(data);

key = key % N;

Of course that "folds together" many different values.  For example, if you took
numbers modulo 100, then the values 115, 315, 7915, 28415 etc all map onto the same
value (15).  When you reduce hash keys modulo some value, you do end up with many
more "hash collisions" where different data elements are associated with the same final
key.  For example, if you take those key values shown previously and reduce them
modulo 40, then the words meadow and yellow "collide" because both have keys that
are converted to the value 7.

The scheme outlined in the previous subsection works with these reduced size keys.
We can have a table of strings, initially all null strings (just the '\0' character in each).
Strings can be inserted into this table, or the table can be "searched" to determine
whether it already contains a string.  (The example in the next section illustrates an
application using essentially this structure).

Figure 18.1 illustrates the structure of this slightly simplified hash table.  There is an
array of one thousand words (up to 19 characters each).  Unused entries have '\0'; used
entries contain the strings.  The figure shows the original hash keys as generated by the
function given earlier; these are reduced modulo 1000 to get the index.

The following data structures and functions are needed:

const int kLSIZE = 20;
const int kTBLSIZE = 1000;

typedef char LongWord[kLSIZE];

LongWord theTable[kTBLSIZE];

Modulo arithmetic

Hash collisions



514 Bits and pieces

\0

\0

Application\0

\0

\0

\0

\0

604

618

297

(2166479604)

Testing\0 (3440093618)

Program\0 (3804382297)

99 Function\0 (2584456099)

Simplified Hash Table

Index Word Original hash key

Figure 18.1 A simplified form of hash table.

void InitializeHashTable(void);
Initializes all table entires to '\0'

int NullEntry(int ndx);
Checks whether the entry at [ndx] is a null string

int MatchEntry(int ndx, const char str[]);
Checks whether the entry at [ndx] equals str (strcmp())

int SearchForString(const char str[]);
Searches table to find where string str is located,
returns position or -1 if string not present

void InsertAt(int ndx, const char str[]);
Copies string str in table entry [ndx]

int InsertString(const char str[]);
Organizes insertion, finding place, calling InsertAt();



A simple hash table 515

returns position where data inserted, or -1 if table full.

The code for these functions is simple.  The "initialize table" function sets the
leading byte in each word to '\0' marking the entry as unused.

void InitializeHashTable(void)
{

for(int i=0; i< kTBLSIZE; i++)
theTable[i][0] ='\0';

}

The insertion process has to find an empty slot for a new string, function "null entry"
tests whether a specified entry is empty.  Function "match entry" checks whether the
contents of a non-empty slot matches a sought string.

int NullEntry(int ndx)
{

return (theTable[ndx][0] == '\0');
}

int MatchEntry(int ndx, const char str[])
{

return (0 == strcmp(str, theTable[ndx]));
}

Insertion of entries is handled by the two functions "insert at" and "insert string".
Function "insert at" simply copies a string into a (previously empty) table location:

void InsertAt(int ndx, const char str[])
{

assert (strlen(str) < kLSIZE);
strcpy(theTable[ndx],str);

}

The insert string function does most of the work.  First, it "hashes" the string using
the function shown earlier to get a hash key.  This key is then reduced modulo the
length of the array to get a possible index value that defines where the data might go.

The function then has a loop that starts by looking at the chosen location in the
array.  If this location is "empty" (a null string), then the word can be inserted at that
point.  The "insert at" function is called, and the insertion position returned.

If the location is not empty, it might already contain the same string (the same word
may be being entered more than once).  This is checked, and if the word does match the
table entry then the function simply returns its position.

In other cases, a "collision" must have occurred.  Two words have the same key.  So
the program has to find an empty location nearby.  This function uses the simplest
scheme; it looks at the next location, then the one after that and so forth.  The position

Initializing the table

Checking entries in
the table

Inserting an entry at
its proper position



516 Bits and pieces

indicator is incremented each time around the loop; taking its value modulo the array
length (so on an array with one thousand elements, if you started searching at 996 and
kept finding full, non-matching entries, you would try entries 997, 998, 999, then 0, 1,
etc.)

Eventually, this search should either find the matching string (if the word was
entered previously), or find an empty slot.  Of course, there is a chance that the array is
actually completely full.  If you ever get back to looking at the same location as where
you started then you know that the array is full.  In this case the function returns the
value -1 to indicate an error.

int InsertString(const char str[])
{

unsigned long k = HashString(str);
k = k % kTBLSIZE;
int pos = k;

int startpos = pos;

for(;;) {
if(NullEntry(pos)) {

InsertAt(pos, str);
return pos;
}

if(MatchEntry(pos, str)) return pos;
pos++;
if(pos >= kTBLSIZE)

pos -= kTBLSIZE;
if(pos == startpos)

return -1;
}

}

The function that searches for a string uses a very similar strategy:

int SearchForString(const char str[])
{

unsigned long k = HashString(str);
k = k % kTBLSIZE;
int pos = k;
int startpos = pos;
for(;;) {

if(NullEntry(pos)) return -1;
if(MatchEntry(pos, str)) return pos;
pos++;
if(pos >= kTBLSIZE)

pos -= kTBLSIZE;
if(pos == startpos)

return -1;
}

Finding the place to
insert a string

"Looking up" a
string



A simple hash table 517

}

Although it works, this is not a particularly good implementation of a hash table.
The main problem is that it wastes a lot of space with all those "null words".  A better
implementation is given later after pointers have been introduced.

Another problem with the implementation is the "linear search" strategy used to find
an empty slot after a collision of hash keys.  This strategy tends to result in clustering of
entries and more costly searches.  There are alternative strategies that you will be shown
in more advanced courses on "data structures and algorithms".

You want to avoid a hash table getting too close to being full.  The fuller it is, the
greater the chance of hash collisions and then lengthy sequential searches through
subsequent table entries.  The usual advice is the table should be no more half full when
you've loaded all the data.  So, you should have a table of about five thousand entries if
you need handle a vocabulary of a couple thousand words.

18.2.3 Example: identifying the commonly used words

Specification

Write a program that will produce a table giving in order the fifty words that occur most
frequently in a text file, and details of the number of times that each occurred.

The program is to:

1 Prompt for a file name, and then to either open the file or terminate if the file
cannot be accessed.

2 Read characters from the file.  All letters are to be converted to lower case.
Sequences of letters are to be assembled into words (maximum word length < 20
characters).  A word is terminated by any non-alphabetic character.

(Non-alphabetic characters are discarded, they serve only as word terminators.)

3 Save all distinct words and maintain a count with each; this count is initialized to 1
on the first occurrence and is incremented for each subsequent occurrence.

4 When the file has been read completely, the words are to be sorted by frequency
and details of the fifty most frequent words are to be printed.

Design

The program will have a number of distinct phases.  First, it has to read the file
identifying the words and recording counts.  If we had a hash table containing little
structures with words and counts, an insert of a new word could initialize a count while

First iteration



518 Bits and pieces

an insert of an already existing word would update the associated count.  A hash table
makes it easy to keep track of unique words.  These word and count data might have to
be reorganised when the end of the file is reached; the structs would need to be moved
into an array that can be sorted easily using a standard sort.  Next, the data would get
sorted (modified version of Quicksort() from Chapter 13 maybe?).  Finally, the
printouts are needed.  An initial sketch for main() would be:

open file
get the words from file
reorganize words
sort
print selection

Most of these "functions" are simple.  We've dealt with file opening many times
before.  The hard part will be getting words from the file.  While we still have to work
out the code for this function, we do know that it is going to end up with a hash table
some of whose entries are "null" and others are words with their counts.  The sort step
is going to need an array containing just the data elements that must be sorted.  But that
is going to be easy, we will just have to move the data around in the hash table so as to
collect all the words at the start of the array.  Sorting requires just a modification of
Quicksort.  The print out is trivial.

open file
prompt for filename
attempt to open file
if error

print warning message and exit

reorganize words
i = 0
for j = 0 ; j < hash-table-size; j++

if(! null_entry(j))
entry[i] = entry[j], i++

sort
modified version of quicksort and partition
uses an array of word structures,
sorting on the "count" field of these structures
(sorts in ascending order so highest frequency in

last array elements)

print selection
(need some checks, maybe less than 50 words!)
for j = numwords-1, j>= numwords - 50, j--

print details of entry[j]



Example: identifying the common words 519

The sort routine will need to be told the number of elements.  It would be easy for this
to be determined by the "reorganize" routine; it simply has to return the value of its 'i'
counter.

These functions shouldn't require any further design iterations.  They can be coded
directly from these initial specifications.  With "sort" and "open file" it is just a matter
of "cutting and pasting" from other programs, followed by minor editing.  The data type
of the arguments to the Quicksort() function must be changed, and the code that
accesses array elements in Partition() must be adjusted.  These elements are now
going to be structs and the comparison tests in Partition() will have to reference
specific data members.

The "get the words" process requires more analysis, but the basic structure of the
function is going to be something simple like:

"get the words"
Initialize hash table
while get another word

insert word

(It would be sensible for the insertion to be checked; the program should stop if the
hash table has become full causing the insert step to fail.)

The program needs slightly modified versions of the hash table functions given in
the last section.  There is no need for a search function.  The other functions used to
manipulate the hash table have to be changed to reflect the fact that the table entries
aren't just character arrays, instead they are little structs that contain a character array
and a count.  The main change will be in the insert function.  If a word is already in the
array, its count is to be updated:

insert word
Get hash key
reduce key modulo array size
initialize search position from reduced key
loop

if entry at position is null
insert at …
return position

if entry at position has string equal to argument
update count in entry at position
return position

increment position (mod length of array)
check for table full (return failure -1 indicator)

The "get word" function should fill in a character array with letters read from the
file.  The function should return true if it finds a word, false if there is no word (this will
only occur at the end of file).  When called, the function should start by discarding any
leading whitespace, digit, or punctuation characters.  It can start building up a word
with the first letter that it encounters.

Second iteration
through design



520 Bits and pieces

Successive letters should be added to the word; before being added they must be
converted to lower case.  This letter adding loop terminates when a non-letter is found.
The function has to check for words in the file that are larger than the maximum
allowed for.  The program can be terminated if excessive length words are found.

The function has to put a '\0' after the last letter it adds to the word.
These considerations result in the following sketch for "get word":

get word (given reference word argument to fill in)
initialize word[0] to '\0'

(just in case there is nothing left in file)
do

get character
if at end of file

return
while character isn't a letter

while character is letter
add to word
check word length exceeded
get next character
if end of file

break loop
add '\0' to word

All that remains is to decide on data structures and function prototypes.  We need a
struct that combines a character array and a count:

const int kLSIZE = 20;
typedef char LongWord[kLSIZE];
struct WordInfo {

LongWord fWord;
long fCount;

};

Twenty characters (19 + terminating '\0') should suffice for most words.  The struct can
have a LongWord and a long count.

The "hash table" will need a large array of these structs:

const int kTBLSIZE = 4000;
WordInfo gTable[kTBLSIZE];

(This gTable array needs about 90,000 bytes.  Symantec 8 on the PowerPC handles
this; but Symantec 7 on a Mac-Quadra cannot handle static data segment arrays this
large.  You will also have problems in the Borland environment; you will have to use
32-bit memory addressing models for this project.)

The only other global data element would be the ifstream for the input file.

Third iteration



Example: identifying the common words 521

Function prototypesBits HashString(const char str[]);
Hashing function shown earlier

void InitializeHashTable(void);
Modified version of function given previously.  Initializes
both data members of all structs in "hash table" array;
struct's fWord character array set to null string, fCount
set to zero.

int NullEntry(int ndx);
int MatchEntry(int ndx, const char str[]);

Modified versions of functions given previously.  Use fWord
data member of struct.

void InsertAt(int ndx, const char str[]);
Modified version of function given previously.  Uses
strcpy() to set fWord data member of struct; initializes
fCount data member to 1.

int InsertWord(const char str[]);
Organize insertion of new word, or update of fCount data
member for existing word.

void OpenFile();

int GetWord(LongWord& theWord);
Fills word with next alphabetic string from file

(terminates
program if word too large).

void GetTheWords(void);
Organize input or words and insertion into hash table.

int CompressTable(void);
Closes up gaps in table prior to sorting.

int Partition( WordInfo d[], int left, int right);
Quicksort's partitioning routine a for a WordInfo array.

void Quicksort( WordInfo d[], int left, int right);
Modified Quicksort.

void PrintDetails(int n);
Prints the 50 most frequent words (or all words if fewer
than 50) with their counts.

int main();



522 Bits and pieces

Implementation

Only a few of the functions are shown here.  The rest are either trivial to encode or are
minor adaptations of functions shown earlier.

All the hash table functions from the previous section have modifications similar to
that shown here for the case of InitializeHashTable():

void InitializeHashTable(void)
{

for(int i=0; i< kTBLSIZE; i++) {
gTable[i].fWord[0] ='\0';
gTable[i].fCount = 0;

}
}

The "insert" function has slightly modified behaviour:

int InsertWord(const char str[])
{

unsigned long k = HashString(str);
k = k % kTBLSIZE;
int pos = k;

int startpos = pos;

for(;;) {
if(NullEntry(pos)) {

InsertAt(pos, str);
return pos;
}

if(MatchEntry(pos, str)) {
gTable[pos].fCount++;
return pos;
}

pos++;
if(pos >= kTBLSIZE)

pos -= kTBLSIZE;
if(pos == startpos)

return -1;
}

}

The GetWord() function uses two loops.  The first skips non alphabetic characters;
the second builds the words:

int GetWord(LongWord& theWord)
{

int n = 0;
char ch;



Example: identifying the common words 523

theWord[0] = '\0';

do {
gDataFile.get(ch);
if(gDataFile.eof())

return 0;
} while (!isalpha(ch));

while(isalpha(ch)) {
theWord[n] = tolower(ch);
n++;
if(n==(kLSIZE-1)) {

cout << "Word is too long" << endl;
exit(1);

}
gDataFile.get(ch);
if(gDataFile.eof())

break;
}
theWord[n] = '\0';
return 1;

}

The GetTheWords() function reduces to a simple loop as all the real work is done
by the auxiliary functions GetWord() and InsertWord():

void GetTheWords(void)
{

InitializeHashTable();
LongWord aWord;
while(GetWord(aWord)) {

int pos = InsertWord(aWord);
if(pos < 0) {

cout << "Oops, table full" << endl;
exit(1);

}
}

}

The CompressTable() function shifts all entries down through the array.  Index i
identifies the next entry to be filled in.  Index j runs up through all entries.  If a non null
entry is found, it is copied and i incremented:

int CompressTable(void)
{

int i = 0;
int j = 0;
for(j = 0; j < kTBLSIZE; j++)

if(!NullEntry(j)) {
gTable[i] = gTable[j];



524 Bits and pieces

i++;
}

return i;
}

The Partition() function has minor changes to argument list and some
statements:

int Partition( WordInfo d[], int left, int right)
{

int val =d[left].fCount;
int lm = left-1;
int rm = right+1;
for(;;) {

do
rm--;

while (d[rm].fCount > val);

…
…
…
}

}

Function PrintDetails() uses a loop that runs backwards from the last used entry
tin the table, printing out entries:

void PrintDetails(int n)
{

int min = n - 50;
min = (min < 0) ? 0 : min;
for(int i = n-1, j = 1; i >= min ; i --, j++)

cout << setw(5) << j << ": "
<< gTable[i].fWord << ", \t"

<< gTable[i].fCount << endl;
}

As usual, main() simplifies to a sequence of function calls:

int main()
{

OpenFile();
GetTheWords();
int num = CompressTable();
Quicksort(gTable, 0, num - 1);
PrintDetails(num);
return 0;

}



Example: identifying the common words 525

Part of the output from a run against a test data file is:

Enter filename
txtf.txt
    1: the,     262
    2: of,      126
    3: to,      104
    4: a,       86
    5: and,     74
    6: in,      70
    7: is,      50
    8: that,    41
    9: s,       39
   10: as,      32
   11: from,    30
   12: it,      29
   13: by,      29
   14: are,     27
   15: for,     27
   16: be,      27

Most of these are exactly the words that you would expect.  What about things like 's'?
You get oddities like that.  These will be from all the occurrence of 's at the ends of
words; the apostrophe ended a word, a new word starts with the s, then it ends with the
following space.

Because the common words are all things like "the", they carry no content
information about the document processed.  Usually programs used to analyze
documents have filters to eliminate these standard words.  An exercise at the end of this
chapter requires such an extension to the example program.

18.3 CODING "PROPERTY VECTORS"

Where might you want actual bit data, that is collections of bits that individually have
meaning?

One use is in information retrieval systems.
Suppose you have a large collection of news articles taken from a general science

magazine (thousands of articles, lengths varying from 400 to 2000 words).  You want to
have this collection arranged so that it can be searched for "articles of interest".

Typically, information retrieval systems allow searches in which articles of interest
are characterized as those having some minimum number of keywords from a user
specified group of keywords.  For example, a request might require that at least four of
the following keywords be found in an article:

aids, hiv, siv, monkey, virus, immune



526 Bits and pieces

This example query would find articles describing scientific studies on the HIV virus
and/or the related virus that infects monkeys (SIV).

You wouldn't want the search program to read each article into memory and check
for occurrences of the user specified keywords, that would be much too slow.
However, if the keywords used for searches are restricted to those in a predefined set,
then it is fairly easy to implement search schemes that are reasonably fast.

These search schemes rely on indexes that relate keywords to articles.  The simplest
approach is illustrated in Figure 18.2.  The main file contains the source text of the
news articles.  A second "index file" contains small fixed size data records, one for each
article in the main file.

W
i
n
d
 

g
e
n
e

r
a
t
o

r
s
 

a
r
e
 

b
e
i
n

g c
o
s
t

. A
s
t
e

r
o
i
d

s
 
a
s
 

b
i
g
 

a
s
 

h
o
u
s

e
s
 

p
a
s
s
 

n
e
a
r
 

t
h
e
 

E
a
r
t

h 1
0
0
 

t
i
m
e

s t
h
e
 

E
a
r
t

h
.
"

Articles file

Index file

An index item Several long 
ints with bits set

Location of article

Figure 18.2 Simple Information Retrieval system.

Each index record contains a "bit map".  Each bit corresponds to one of the
keywords from the standard set.  If the bit is '1' it means that the article contained that
keyword; if the keyword is not present in the article, the corresponding bit in the map is
a zero.  Because the articles vary in size, it is not possible to work out where an article
starts simply from knowing its relative position in the sequence of articles.  So, the
index record corresponding to an article contains details of where that article starts in
the main file.

Two programs are needed.  One adds articles to the main articles file and appends
index records to the index file.  The second program performs the searches.

Both programs share a table that identifies the (keyword, bit number) details.  It is
necessary to allow for "synonyms".  For example, the articles used when developing



Example: coding property vectors 527

this example included several that discussed chimpanzees (evolution, ecology, social
habits, use in studies of AIDS virus, etc); in some articles the animals were referred to
as chimpanzees, in others they were "chimps".  "Chimp" and chimpanzee are being
used as synonyms.  If both keywords "chimpanzee" and "chimp" are associated with the
same bit number, it is possible to standardise and eliminate differences in style and
vocabulary.

A small example of a table of (keyword, bit numbers) is:

typedef char LongWord[20];

struct VocabItem {
LongWord fWord;
short fItemNumber;

};

VocabItem vTable[] = {
{ "aids", 0 },
{ "hiv", 1 },
{ "immunity", 2 },
{ "immune", 2},
{ "drug", 3 },
{ "drugs", 3 },
{ "virus", 4 },
…

};

A real information retrieval system would have thousands of "keywords" that map onto
a thousand or more standard concepts each related to a bit in a bit map.  The example
here will be smaller; the bit maps will have 128 bits thus allowing for 128 different key
concepts that can be used in the searches.

The program used to add articles to the file would start by using the data in the
VocabItem table to fill in some variation on the hash table used in the last example.
The various files needed would be opened (index file, articles file, text file with new
article).  Words can then be read from the source text file using code similar to that in
the last example (the characters can be appended to the main articles file as they are
read from the source text file).  The words from the file are looked up in the hash table.
If there is no match, the word is discarded.  If the word is matched, then the word is one
of the keywords; its bit number is taken the matched record and used to set a bit in a bit
map record that gets built up.  When the entire source text has been processed, the bit
map and related location data get appended to the index file.

The query program starts by prompting the user to enter the keywords that are to
characterize the required articles.  The user is restricted to the standard set of keywords
as defined in the VocabItem table; this is easy to do by employing code similar to the
"pick keyword" function that has been illustrated in earlier examples.  As keywords are
picked, their bit numbers are used to set appropriate bits in a bit map.  Once all the
keywords have been entered, the user is prompted to specify the minimum number of

Adding data to the
file

Running a query



528 Bits and pieces

matches.  Then each index record gets read in turn from the index file.  The bit map for
the query and that from the index file are compared to find the number of bits that are
set in both.  If this number of common bits exceeds the minimum specified, then the
article should be or interest.  The "matched" article is read and displayed.

The bitmaps needed in this application will be simply small arrays of unsigned long
integers.  If we have to represent 128 "concepts", we need four long integers.  If you go
down to the machine code level, you may find that a particular machine architecture
defines a numbering for the bits in a word.  But for a high level application like this,
you can chose your own.  The chosen coding is shown in Figure 18.3.

Bit 0 ("aids")

Bit 1 ("hiv")

Bitmap: 4 unsigned longs

Bit 31 ("carcinogen")

Bit 32 ("ozone")

Bit 63 ("…")

Figure 18.3 Bit maps and chosen bit numbering.

In order to set a particular bit, it is necessary to first determine which of the unsigned
longs contains that bit (divide by 32) and then determine the bit position (take the bit
number modulo 32).  Thus bit 77 would be the 13th bit in bitmap[2].

Bits in common to two bit maps can be found by "Anding" the corresponding array
entries, as shown in Figure 18.4  The number of bits in common can be calculated by
adding up the number of bits set in the result.  There are several ways of counting the
number of bits set in a bit pattern.  The simplest (though not the fastest) is to have a
loop that tests each bit in turn, e.g. to find the number of bits in an unsigned long x:

int count = 0;
int j = 1;
for(int i=0;i<32;i++) {

if(x & j)
count++;

j = j << 1;
}

Bitmaps

Setting a required bit

Counting the bits in
common



Example: coding property vectors 529

Query Reference article

Common bits

Number of bits in common = 4

Figure 18.4 Finding and counting the common bits.

Specification

Implement an article entry program and a search program that together provide an
information retrieval system that works in the manner described above.

Design

These programs are actually easier than some of the earlier examples!  The first
sketches for main()s for the two programs are:

article addition program
open files
process text
close files

and

search program
open files(
get the query
search for matches



530 Bits and pieces

Addition program

The open files routine for the addition program has to open an input file with the source
text of the article that is to be processed and two output files  the main articles file and
the index file.  New information is to be appended to these files.  The files could be
opened in "append mode" (but this didn't work with one of the IDEs which, at least in
the version used, must have a bug in the iostream run time library).  The files can be
opened for output specifying that the write position be specified "at the end" of any
existing contents.

open file
prompt for and open file with text input

(terminate on open error)
open main and index files for output, position "at end"

(terminate on open error)

The close files routine will be trivial, it will simply close all three files.
The main routine is the "process text" function.  This has to initialize the hash table,

then fill it with the standard words, before looping getting and dealing with words from
the text file.  When all the words have been dealt with, an assembled bit map must be
written to the index file; this bit map has to be zeroed out before the first word gets
dealt with.

process text file
initialize and load up hash table
zero bit map
while Get Word from file

deal with word
write bit map and related info

The hash table will be like that in the example in the previous section.  It will
contain small structs.  This time instead of being a word and a count, they are "vocab
items" that consist of a name and a bit number.

The words are easy to "deal with".  The hash table is searched for a match, if one is
found its bit number is set in the bit map.

Search program

The open files routine for this program needs to open both index and articles file.  No
other special actions are required.

The task of "getting the query" can be broken down as follows:

get the query

Hash table



Example: coding property vectors 531

zero bit map representing query
loop

get a keyword
set appropriate bit in bit map

until no more keywords needed
ask for number of keys that must match

The loop will be similar to those in previous examples.  After each keyword is dealt
with, the user will be asked for a Yes/No response to a "More Keywords?" prompt.

The "search for matches" routine will have roughly the following structure:

search for matches
while not end of file on index file

get the bit map of an index record from file (and
details of where article is located)

get number of bits in common between index record's
bit map and query bit map

if number matched exceeds minimum
show matching article

The "show matching article" function will be something like:

show match
move "get pointer" to appropriate position in articles'

file
read character
while not end marker

print character
read next character

The articles in the file had better be separated by some recognizable marker character!
A null character ('\0') would do.  This had better be put at the end of each article by the
addition program when it appends data to that file.  The "show matching article"
function would probably need some extra formatting output to pretty things up.  It
might be useful if either it, or the calling search routine, printed details of the number of
keywords matched.

Bitmaps and bit map related functions

Both programs share a need for bit maps and functions to do things like zero out the bit
maps when initializing things, setting chosen bits, and counting common bits.  These
requirements can be met by having a small separate package that deals with bitmaps.
This will have a header file that contains a definition of what a bit map is and a list of
function prototypes.  A second implementation file will contain the function definitions.

A bit map will be a small array of unsigned longs.  This can be specified using a
typedef in the header file.  The required functions seem to be:



532 Bits and pieces

Zero bits
clear all bits in the bit map

Set bit
work out which array element and which bit
or a 1 into the appropriate bit

Count common bits
build a temporary bit map that represents the "And"

of two bit maps
for each array element in temporary bit map

count its bits and add to overall total
return overall total

Further design steps

Many of the functions in both programs are already either simple enough to be coded
directly, or are the same as functions used in other examples (e.g. the YesNo() function
used when asking for more keywords in the search program).  A few require further
consideration.

The "Get Word" function for the addition program can be almost identical to that in
the example in 18.2.  The only addition is that every character read must be copied to
the output articles file.

The "process text" function needs a couple of additions:

process text file
initialize and load up hash table
zero bit map
note the position of the current "end of file"

of articles file
while Get Word from file

deal with word
write a terminating null to the articles file
write bit map and related info (i.e. the position

of previous end of file!)

These additions make certain that there is a null character separating articles as required
by the search program's "show match" function.  The other additions clarify the "related
info" comment in the original outline.  Each record written to the index file has to
contain the location of the start of the corresponding article as well as a bit map.  So the
"process" function had better note the current length of the articles file before it adds
any words.  This is the "related info" that must then be written to the index file.

The "get a keyword" function needed in search can be modelled on the
PickKeyWord() function and its support routines developed in Section 12.4.  Apart
from PickKeyWord() itself, there were the associated routines FindExactMatch(),



Example: coding property vectors 533

CountPartialMatches() and PrintPartialMatches().  All of these routines have
to be reworked so that they use an array of VocabItems rather than a simple array of
strings.  This recoding is largely a matter of changing the data type of arguments and
adding a data member name to some references to array elements.

Here this is simply a matter of identifying global (and filescope data), deciding on
how to deal with the VocabItem array needed in both programs, and finalising the
function prototypes.

Both programs share the array of VocabItems (the structs with keywords and bit
numbers), and they also both need a count of the number of VocabItems defined.  This
information should be in a separate file that can be #included by both programs:

/*
 Vocabulary file for information retrieval example.
*/

typedef char LongWord[20];

struct VocabItem {
LongWord fWord;
short fItemNumber;

};

VocabItem vTable[] = {
{ "aids", 0 },
{ "hiv", 1 },
…
…
{ "cancer", 28 },
{ "tumour", 29 },
{ "therapy", 30 },
{ "carcinogen", 31 },
{ "ozone", 32 },
{ "environment", 33 },
{ "environmental", 33 },
…
…
{ "toxin", 50 },
{ "poison", 50 },
{ "poisonous", 50 },
…

};

int NumItems = sizeof(vTable) / sizeof(VocabItem);

The vTable array and the count NumItems will be "globals" in both the programs.
Both programs will require a number of ifstream and/or ofstream variables that

get attached to files.  These can be globals.

Final steps in design

Filevocab.inc



534 Bits and pieces

The addition program requires a "hash table" whose entries are VocabItems.  This
won't be particularly large as it only has to hold a quick lookup version of the limited
information in the vTable array.

The search program could use globals for the bit map that represents a query and for
the minimum acceptable match.

The typedef defining a "bit map" would go in a header file along with the associated
function prototypes:

#ifndef __MYBITS__
#define __MYBITS__

#define MAXBIT 127
#define MAPSZ 4

typedef unsigned long Bits;

typedef Bits Bitmap[MAPSZ];

void ZeroBits(Bitmap& b);

void SetBit(int theBit, Bitmap& b);

int CountCommonBits( Bitmap& b1,  Bitmap& b2);

#endif

The function prototypes for the remaining functions in the two programs are:

article addition program

Bits HashString(const char str[]);
The hash function given earlier.

void InitializeHashTable(void);
Fills hash table with "null VocabItems" (fWord field
== '/0', fItemNumber field == -1).

int NullEntry(int ndx);
int MatchEntry(int ndx, const LongWord w);
void InsertAt(int ndx, const VocabItem v);

Similar to previous examples except for use of VocabItem
structs.

int SearchForWord(const LongWord w);
Minor variation on previously illustrated hash table
search function.

int InsertVocabItem(const VocabItem v);

File mybits.h



Example: coding property vectors 535

Inserts standard VocabItem into hash table.

void InsertKeyWords(void);
Loops through all entries in vTable, inserting copies into
hash table.

void OpenFiles(void);
void CloseFiles(void);

int GetWord(LongWord& theWord);
Similar to previous get word, just copies input characters

to output file in addition to other processing.

void ProcessText(void);
Main loop of addition program.

int main();

search program

void OpenFiles(void);

int FindExactMatch(const VocabItem keyws[], int nkeys,
const LongWord input);

int CountPartialMatches(const VocabItem keyws[], int nkeys,
const LongWord input, int& lastmatch);

void PrintPartialMatches(const VocabItem keyws[], int nkeys,
const LongWord input);

int PickKeyWord(const VocabItem keywords[], int nkeys);
These functions are minor variations of those defined
in 12.4

int YesNo(void);

void GetTheQuery(void);
Loop building up bit map that represents the query.

void ShowMatch(long where);
Prints article starting at byte offset 'where' in main
articles file.

void SearchForMatches(void);

int main();

Implementation

Only a few of the functions are shown here.  The others are either identical to, or only
minor variations, of functions used in earlier examples.



536 Bits and pieces

Examples of functions from the mybits.cp file are:

void SetBit(int theBit, Bitmap& b)
{

assert((theBit >= 0) && (theBit <= MAXBIT));
int word = theBit / 32;
int pos = theBit % 32;
int mask = 1 << pos;
b[word] |= mask;

}

Function SetBit() uses the scheme described earlier to identify the array element and
bit position.  A "mask" with one bit set is then built by shifting a '1' into the correct
position.  This mask is then Or-ed into the array element that must be changed.

Function CountCommonBits() Ands successive elements of the two bit patterns and
passes the result to function CountBits().  The algorithm used by CountBits() was
illustrated earlier.

int CountCommonBits( Bitmap& b1,  Bitmap& b2)
{

int result = 0;
for(int i = 0; i < MAPSZ; i++) {

Bits temp = b1[i]  & b2[i];
result += CountBits(temp);
}

return result;
}

The standard hash table functions all have minor modifications to cater for the
different form of a table entry:

void InitializeHashTable(void)
{

for(int i=0; i< kTBLSIZE; i++) {
gTable[i].fWord[0] ='\0';
gTable[i].fItemNumber = -1;

}
}

The OpenFiles() function for the articles addition program has a mode that is
slightly different from previous examples; the ios::ate parameter is set so that new
data are added "at the end" of the existing data:

void OpenFiles(void)
{

char fname[100];
cout << "Enter name of file with additional news article"

<< endl;



Example: coding property vectors 537

cin >> fname;
gTextFile.open(fname, ios::in | ios::nocreate);
if(!gTextFile.good()) {

cout << "Sorry, couldn't open input text file"
<< endl;
exit(1);

}
gInfoData.open(InfoFName1, ios::out | ios::ate);
if(!gInfoData.good()) {

cout << "Sorry, couldn't open main info. file" <<
endl;
exit(1);

}
gInfoIndex.open(InfoFName2, ios::out | ios::ate);
…

}

Function GetWord() is similar to the previous version, apart from the extra code to
copy characters to the output file:

int GetWord(LongWord& theWord)
{

int n = 0;
char ch;
theWord[0] = '\0';

do {
gTextFile.get(ch);
if(gTextFile.eof())

return 0;
gInfoData.write(&ch,1);

} while (!isalpha(ch));

while(isalpha(ch)) {
…
…
gInfoData.write(&ch,1);

}
theWord[n] = '\0';
return 1;

}

Most of the work is done by ProcessText():

void ProcessText(void)
{

InitializeHashTable();
InsertKeyWords();

LongWord aWord;



538 Bits and pieces

Bitmap aMap;
ZeroBits(aMap);
long where;
where = gInfoData.tellp();
while(GetWord(aWord)) {

int pos = SearchForWord(aWord);
if(pos >= 0) {

int keynum = gTable[pos].fItemNumber;
SetBit(keynum, aMap);
}

}
char ch = '\0';
gInfoData.write(&ch, 1);
gInfoIndex.write(&aMap,sizeof(aMap));
gInfoIndex.write(&where,sizeof(long));

}

The call to tellp() gets the position of the end of the file because the open call
specified a move to the end.  The value returned from tellp() is the starting byte
address for the article that is about to be added.

The principal functions from the search program are:

void GetTheQuery(void)
{

ZeroBits(gQuery);
cout << "Enter the terms that make up the query" << endl;
do {

int k = PickKeyWord(vTable, NumItems);
int bitnum = vTable[k].fItemNumber;
SetBit(bitnum, gQuery);

}
while (YesNo());
cout << "How many terms must match ? ";
cin >> gMinMatch;

}

Function GetTheQuery() builds up the query bit map in the global gQuery then set
gMinMatch.

Function ShowMatch() basically copies characters from the articles' file to the
output.  There is one catch here.  The file will contain sequences of characters separated
by an end of line marker.  The actual marker character used will be chosen by the text
editor used to enter the original text.  This "end of line" character may not result in a
new line when it is sent to the output (instead an entire article may get "overprinted" on
a single line).  This is catered for in the code for ShowMatch().  A check is made for the
character commonly used by editors to mark an end of line (character with hex
representation 0x0d).  Where this occurs a newline is obtained by cout << endl.  (You



Example: coding property vectors 539

might have to change that hex constant if in your environment the editors use a different
character to mark "end of line".)

void ShowMatch(long where)
{

char ch;
int linepos = 0;
gDatafile.seekg(where,ios::beg);
gDatafile.get(ch);
while(ch != '\0') {

if(ch == 0x0d)
cout << endl;

else cout << ch;
gDatafile.get(ch);

}
cout << "\n------\n";

}

The SearchForMatches() function simply reads and checks each record from the
index file, using ShowMatch() to print any matches.  An error message is printed if
nothing useful could be found.

void SearchForMatches(void)
{

Bitmap b;
long wh;
int matches = 0;
gIndexfile.seekg(0,ios::beg);
while(!gIndexfile.eof()) {

gIndexfile.read(&b, sizeof(Bitmap));
gIndexfile.read(&wh, sizeof(long));
int n = CountCommonBits(b, gQuery);
if(n>=gMinMatch) {

cout << "Matched on " << n << " keys"
<< endl;

ShowMatch(wh);
matches++;

}
}
if(matches == 0)

cout << "No matches" << endl;
}

A test file was built using approximately seventy articles from a popular science
magazine as input.  The results of a typical search are:

Enter the terms that make up the query
fusion
Another search term? (Y or N) : y
power



540 Bits and pieces

Another search term? (Y or N) : n
How many terms must match ? 2
Matched on 2 keys
Cold fusion is alive and well and thriving on Japanese money in an
"attractive" part of France, says Martin Fleischmann, the chemistry
professor who in 1989 claimed to have produced nuclear fusion in a
test tube at room temperature.
 Cold fusion said Fleischmann and his American colleague Stanley
…
…
negligible compared with the heat liberated.

------

18.4 PIECES (BIT FIELDS)

This is definitely a "read only" topic in C++, and outside of a few text books and some
special purpose low-level code it is topic where you won't find much to read.  Any low-
level code using the features described in this section will relate to direct manipulation
of particular groups of bits in the control registers of hardware devices.  We will not
cover such machine specific detail and consider only the (relatively rare) usage in
higher level data structures.

Suppose you have some kind of data object that has many properties each one of
which can take a small number of values (mostly the same sorts of thing that you would
consider suitable for using enumerated types) e.g.:

colour:  coral, pearl, smoke-grey, steel-blue, beige;
size:    small, medium, large, x-large, xx-large,
finish:  matte, silk, satin, gloss
style:   number in range 0..37

If you did chose to work with enumerated types, the compiler would make each either a
single unsigned character, or an unsigned short integer.  Your records would need at
least three bytes for colour, size, and finish; another unsigned byte would be needed
for the style.  Using enumerated types, the typical struct representing these data would
be at least four bytes, 32-bits, in size.

But that isn't the minimum storage needed.  There are five colors, for that you need
at most three bits.  Another three bits could hold the size. The four finishes would fit in
two bits.  Six bits would suffice for the style.  In principle you could pack those data
into 14 bits or two bytes.

This is permitted using "bit fields":

#include <stdlib.h>
#include <iostream.h>

struct meany {



Bit fields 541

unsigned colour : 3;
unsigned size : 3;
unsigned finish : 2;
unsigned style : 6;

};

int main()
{

meany m;

m.colour = 4;
m.size = 1;
m.finish = 2;
m.style = 15;
cout << m.style << endl;

return EXIT_SUCCESS;
}

(With the compiler I used, a "meany" is 4 bytes, so I didn't get to save any space
anyway.)

Note, you are trading space and speed.  For a small reduction in space, you are
picking up quite an overhead in the code needed to get at these data fields.

There is one possible benefit.  Normally, if you were trying to pack several small
data fields into a long integer, you would need masking and shift operations to pick out
the appropriate bits.  Such operations obscure your code.

If you use bit fields, the compiler generates those same masking and shift operations
to get at the various bit fields.  The same work gets done.  But it doesn't show up in the
source level code which is consequently slightly easier to read.

A real advantage of
bit fields


